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Abstract. Over the past several years, a measure-theoretic framework for formulating and solving sto-

chastic inverse problems has been developed and analyzed. In this framework, we begin with a model,

model inputs (called parameters), and a quantity of interest map that defines the types of model outputs

used to formulate the stochastic inverse problem. The solution to the stochastic inverse problem is a (non-

parametric) probability measure on the space of parameters. A non-intrusive sample based algorithm has

also been developed and analyzed to approximate this probability measure. More recent work has shown

that a particular geometric property (the skewness) of the quantity of interest map is correlated to the

accuracy in the finite sample approximation of the probability measure. In this work, we provide a more

in-depth numerical investigation into how skewness impacts the accuracy and convergence rates of such

approximate probability measures. We provide an algorithmic procedure for computing a metric on a space

of probability measures, and we demonstrate that while convergence rates are unaffected by the choice of

map, the absolute error is directly proportional to the skewness of the map.

Contents

1. Introduction 2

2. Measure-Theoretic Inversion: A Review 3

2.1. Notation & Terminology 3

2.2. The Stochastic Inverse Problem 4

3. Numerical Approximations and Analysis 6

3.1. Algorithm 6

3.2. Descriptions of Error 7

3.3. Skewness and Accuracy 8

4. The Metrization of a Space of Probability Measures 9

5. Numerical Implementations and Software Contributions 11

6. Numerical Results 14

6.1. Example 1 15

6.2. Example 2 15

6.3. Example 3 17

7. A Nonlinear Example 18

8. Conclusion 21

References 21

1



Michael Pilosov Master’s Research Report – April 7, 2018

1. Introduction

The description and reduction of uncertainties in physics-based computational models is of great interest

to the community of computational mathematicians. The process of parameter tuning after the model’s

initial development starts with the modeler specifying bounds using domain-specific knowledge. However,

exact values of parameters within these bounds are often uncertain. These uncertainties lead to uncertainties

in the observable model outputs, i.e., the quantities of interest (QoIs). This is problematic for the predictive

capabilities of the model. The reduction and quantification of these uncertainties in the parameters can be

informed by a process of exploratory sampling which is used to solve a stochastic inverse problem (SIP).

The choice of observable model outputs used in the formulation and solution of the stochastic inverse

problem lead to different solutions defined as probabilities measures or densities. Not only may the supports

of these densities differ, but our ability to approximate these densities with finite sampling will be affected

as well. Here, we study how a quantifiable geometric property of the QoI maps relates to the number of

samples we need to sufficiently approximate the probability density.

This work builds on results presented in [7] and in [5], where an end-to-end algorithmic framework was

developed for the analysis and reduction of uncertainties in computational models. In [7], a geometric

quantity referred to as the skewness of a QoI map, was introduced and linked to the solution process, though

no efficient method to compute the quantity was provided. This was expanded upon and remedied in [9],

where efficient computational methods (relying on sampled Jacobians of the QoI map) were defined and

developed to quantify both skewness and another geometric property of the QoI map. There, we defined a

multi-objective optimization problem for selecting a QoI map based on these properties. In doing so, the

framework for simulation-based optimal experimental was defined. This framework was shown to be effective

in its infancy on a hurricane storm surge example in [11].

In this work, we specifically study the impact skewness has on the errors and convergence of solutions to

the SIP using the BET software [12]. BET is an open-source Python package that uses random (or regular)

sampling to compute solutions to the SIP. We expand on the analysis of [8], which provided a description

of errors in approximating the probabilities of events using solutions. Since errors caused by skewness can

cancel out globally, it is not clear what the impact can be on the solution provided by BET. To discuss errors

and convergence of solutions to a SIP, we describe how we metrize a space of probability measures. We also

provide an algorithm for computing the metric used in this work.

We begin the paper with a brief review of the measure-theoretic background necessary for the development

of the problem and solution method given in [5]. In Section 3, an algorithm is provided for the definition

and solution of the SIP from Section 2 and introduces notation to describe the errors involved in the process.

A precise definition of the geometric property we study in this work is also given in this section. Next, we

describe several commonly used metrics on spaces of probability measures in Section 4. Then, in Section 5,
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we handle the theoretical foundations of the numerical implementation of equipping our space with such a

metric. Finally we provide the numerical results that are the novel contributions of this work in Section 6

before making some concluding remarks.

2. Measure-Theoretic Inversion: A Review

2.1. Notation & Terminology. We begin by assuming a (deterministic) model, denoted by

M(u, λ) = 0,

is specified that relates state variables u to model inputs (parameters) denoted by the vector λ. The

components of λ may include parameters in either the model operator (e.g. a diffusion coefficient) or input

data (e.g. the frequency of a sinusoidal source, initial, or boundary data). Let Λ denote the set of all possible

input parameters. The solution operator of the model M then defines a map taking λ ∈ Λ to a solution

denoted u(λ) which is assumed to be unique.

In an experimental setting, we often cannot fully observe u(λ), but rather we define some finite set of

observable scalar quantities that are mathematically modeled by functionals of the solution. For example,

in experiments of heat diffusion in a media, we typically only record the temperature at some small number

of pre-specified points in space-time where measurement devices can be positioned. We refer to the defined

set of observables and their associated functionals as quantities of interest (QoI), and the set of functionals

we consider defines a (vector-valued) QoI map, which we denote by Q. Monte-Carlo integration appears

throughout the uncertainty quantification literature and is an integral part of implementing analytical results

computationally.

Here, we motivate the reduction of a quantity called skewness in pursuit of optimizing the geometry of

set-valued solutions to stochastic inverse problems with respect to their ability to be well-approximated by

Monte-Carlo integration. However, the results hold for any attempt to approximate densities defined on sets

induced by random samples, and thus may be of interest to the larger research community. We metrize the

space of probability measures to demonstrate that the number of samples required to approximate densities

using uniform i.i.d. sampling is proportional to the skewness of the map used for inversion, though the

convergence rate of the algorithm used to solve the stochastic inverse problem is unaffected.

Since the solution to the model, u(λ), depends on λ, so do the QoI, and we adopt the notation that

Q(λ) := Q(u(λ))

to make this dependence on model parameters explicit. Furthermore, this convention also expresses the

reality of the limitations of an experimental setting, where we may be able to control λ in order to observe

Q(λ) without observing u(λ) in its entirety.
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The outputs of the QoI map Q are what we refer to as the data and the range of the QoI defines the data

space DQ, i.e.

DQ = Q(Λ).

Here, we use DQ to emphasize that the data space depends on the choice of QoI map Q.

We let Q denote the set of possible QoI maps for which it is possible to collect experimental data. For

example, suppose we may record only a single temperature measurement at any of ten locations in space-

time. Then Q is defined by ten possible QoI maps. If we can record any two such measurements, then Q is

defined by
(

10
2

)
= 45 possible maps. Note that Q could easily be uncountable, for example if we were not

limited to the spatial locations (or time) at which we could record temperature measurements. However, for

simplicity, we will only discuss problems where Q is finite.

2.2. The Stochastic Inverse Problem. To properly summarize the stochastic inverse problem (SIP) and

desired solution, we define several measure/probability spaces and refer to the schematic given in Figure

1—borrowed from [8]—in order to illustrate the steps and spaces required in the formulation and solution

of the SIPs we consider herein. For a more extensive review, we refer the reader to [1], [4], [5], and [8].

(2.1)

(S1): Stochastic Inverse Problem (SIP)︷ ︸︸ ︷
(Λ,BΛ, µΛ)

Q7−−→ (D,BD, µD)
PD7−−−→ (D,BD, PD)

Q−1

7−−−−→ (Λ, CΛ, PΛ)︸ ︷︷ ︸
(S2): Solution to SIP Satisfying Eq. (2.2)

{P`}`∈L7−−−−−−→ (Λ,BΛ, PΛ)

︸ ︷︷ ︸
(S3): Unique Solution to SIP by Eq. (2.5) and Ansatz

Figure 1. The first step (S1) defines (i) the formulation of the SIP by specification of
the model, (ii) the measure spaces of parameters and (iii) observable outputs, and (iv) the
probability measure on the latter. The second step (S2) defines a unique solution to the SIP
on the space Λ equipped with the contour σ-algebra CΛ using the definition of the push-
forward measure. In (S3), the Disintegration Theorem and and Ansatz are applied to define
a unique solution on the space of interest (Λ,BΛ) equipped with a probability measure PΛ.

The initial measure/probability spaces involved in the formulation of the SIP are summarized in step

(S1) of Fig. 1. We assume Λ ⊂ Rn is equipped a (volume) measure, µΛ, on the Borel σ-algebra BΛ,

defining the measure space (Λ,BΛ, µΛ). Assume that Q is at least piecewise differentiable, which implies the

measurability of the QoI map, and that the space DQ induced by Q is equipped with the Borel σ-algebra

BDQ
. The “push-forward” measure µDQ

on (DQ,BDQ
) is defined as

(2.2) µDQ
(A) =

∫
A

dµDQ
=

∫
Q−1(A)

dµΛ = µΛ

(
Q−1(A)

)
∀ A ∈ BDQ

.

This defines the measure space (DQ,BDQ
, µDQ

). When referring to properties of the data space that are

not unique to the choice of map used to induce DQ, we will drop the subscript notation and assume the

dependence is understood, as expressed in Fig. 1.
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Specifying a probability measure PDQ
on (DQ,BDQ

) to model the uncertainty in data—the final step in

(S1)—leads to the following SIP: determine a probability measure PΛ on (Λ,BΛ) such that the push-forward

measure of PΛ matches PDQ
. In other words, determine a PΛ satisfying

(2.3) PΛ

(
Q−1(E)

)
= PDQ

(E) ∀E ∈ BDQ
.

We call any such solution PΛ to Eq. (2.3) a (measure-theoretic) solution to the SIP. This equation implies

that any solution is uniquely determined on the induced contour σ-algebra

(2.4) CΛ =
{
Q−1(E) : E ∈ BDQ

}
⊂ BΛ,

This is summarized as step (S2) of Fig. 1.

However, for sets A ∈ BΛ \ CΛ, more information is required than is provided in Eq. (2.3) in order

to determine PΛ(A). By the Implicit Function Theorem, if Q ∈ C1(Λ) and we let q ∈ D be a fixed

datum, Q−1(q) exists as a (n − d)-dimensional manifold (possibly piecewise-defined) that we refer to as

a generalized contour [5]. These generalized contours can be indexed by a manifold (possibly piecewise-

defined) of dimension d called a transverse parameterization that intersects each contour once and only

once. Transverse parameterizations exist but are in general not unique [5]. We let L denote any particular

transverse parameterization. Each ` ∈ L corresponds to a unique generalized contour C` ∈ Λ and each point

λ ∈ Λ belongs to a unique C` ∈ Λ. Thus, a transverse parameterization defines a bijection between the

manifold L and the partitioning of Λ into generalized contours.

The induced σ-algebra CΛ and this bijection can then be used to define the measurable space (L,BL). We

denote the projection map πL : Λ → L, and {C`}`∈L denotes the family of generalized contours indexed by

L. It is then possible to define the associated family of measurable spaces {(C`,BC`)}`∈L. A Disintegration

Theorem (cite) is then leveraged to define a unique decomposition for any PΛ defined on (Λ,BΛ) as a

(marginal) probability measure PL on (L,BL) and a family of (conditional) probability measures {P`}`∈L
on {(C`,BC`)}`∈L such that

(2.5) PΛ(A) =

∫
πL(A)

(∫
π−1
L (`)∩A

dP`(λ)

)
dPL(`), ∀ A ∈ BΛ

The uniqueness of a probability measure PΛ on (Λ, CΛ) satisfying Eq. (2.3) implies that the marginal PL

is unique for any particular specification of PD on (D,BD). The disintegration of Eq. (2.5) implies that a

specification of a family of conditional probability measures {P`}`∈L gives us a unique solution to the SIP

on (C`,BC`). However, the conditional measures cannot be determined by observations of q ∈ D. We follow

the work of [5] and adopt the standard ansatz determined by the disintegration of the volume measure µΛ
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to compute probabilities of events contained within contour events. The standard ansatz is given by

(2.6) P` = µC`/µC`(C`), ∀ ` ∈ L,

where µC` is the disintegrated volume measure on generalized contour C`. Thus, we have defined a unique

solution to the SIP on (Λ,BΛ), completing step (S3) in Fig. 1.

3. Numerical Approximations and Analysis

In practice, we must rely on a finite numerical approximation of the often uncountable number of events

in the σ-algebras BDQ
, CΛ, and BΛ. Since CΛ ⊂ BΛ, events in both of these σ-algebras can be approximated

simultaneously. Thus, there are two primary sources of approximation error: (1) partitioning the parameter

space Λ to approximate events in CΛ, and BΛ, and (2) partitioning the data space DQ to approximate events

in BDQ
.

3.1. Algorithm. We present a non-intrusive sample-based algorithm initially introduced in [5] and further

analyzed in [6] that is structured in four stages (written as four independent for-loops) that are linked to

the stages in Fig. 1. We direct the interested reader to [6] for more detailed information and analysis of this

algorithm, e.g., on the requirement of a sampler being “BΛ-consistent” to ensure convergence.

The first two stages correspond to formulating the discretized version of the SIP given in step (S1) in

Fig. 1. We first discretize the probability space (D,BD, PD). Then, we simultaneously discretize the measure

space (Λ,BΛ, µΛ) and construct a simple-function approximation to the map Q. These stages introduce the

primary sources of error, and the third and fourth stages may be thought of as solving the discretized SIP

exactly.

The third stage then identifies the collection of Voronoi cells in Λ that approximate the contour events

defined by Q−1(Di) for i = 1, . . . ,M . This allows us to formulate the consistent solution to the SIP on

(Λ, CΛ, PΛ) as illustrated in step (S2) of Fig. 1. Finally, the fourth stage constructs a discretized approx-

imation to step (S3) in Fig. 1 and uses a discrete version of the ansatz to approximate the probability of

Vj for j = 1, . . . , N . This results in an approximate probability measure PΛ,M,N which produces the same

probability estimates for events A and A \
{
λ(j)

}N
j=1

, which are identical almost everywhere with respect to

µΛ.

Note that Algorithm 1 is independent of the methods by which the samples
{
λ(j)

}N
j=1

were generated or

sets in {Di}Mi=1 are chosen. A thorough discussion of the choices involved in making such decisions is beyond

the scope of this work, though we touch briefly on the discretization of D below.
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Algorithm 1: Numerical Approximation of the Inverse Density

Choose a discretization partition {Di}Mi=1 of D.
for i = 1, . . . ,M do

Compute pD,i = PD(Di).

Choose samples
{
λ(j)

}N
j=1
⊂ Λ, which implicitly defines a Voronoi partition {Vj}Nj=1 of Λ.

for j = 1, . . . , N do
Compute quantity of interest vectors Qj = Q(λ(j)).

Bin Qj in the partition {Di}Mi=1 and let Oj = {i : Qj ∈ Di}.
Compute approximations Vj ≈ µΛ(Vj).

for i = 1, . . . ,M do
Compute Ci = {j : Qj ∈ Di}.

for j = 1, . . . , N do

Compute pΛ,j =
(
Vj/

∑
k∈COj

Vk

)
pD,Oj

.

For any A ∈ BΛ, compute

(3.1) PΛ,M,N (A) =

N∑
j=1

pΛ,jχVj (A)

3.2. Descriptions of Error. We begin by assuming that PD is absolutely continuous with respect to µD,

which allows us to describe PD with a density ρD. Then, for any partition {Di}Mi=1 of D,

PD(Di) =

∫
Di

ρD µD, for i = 1, . . . ,M.

We often use Monte Carlo approximations to compute the approximations pD,i = PD(Di) in the first for-loop

in Algorithm 1. These samples are generated on D and do not require numerical solutions to the model. We

therefore assume that for any discretization of D, these approximations can be made sufficiently accurate

and neglect the error in this computation. We denote the exact solution to the SIP associated with this

partitioning of D by PΛ,M . Approximate solutions to the SIP given in the final for-loop of Algorithm 1 are

denoted by PΛ,M,N,h. Here, the h is in reference to a mesh or other numerical parameter that determines the

accuracy of the numerical solution uh(λ(j)) ≈ u(λ(j)), and subsequently the accuracy in the computations

of Qj = Q(λ(j)) in Algorithm 1.

We assume that h is tunable so that

lim
h↓0

PΛ,M,N,h = PΛ,M,N .

In [8], the focus was on proving the convergence of PΛ,M,N,h(A)→ PΛ(A) for some A ∈ BΛ and on estimating

the error in PΛ,M,N,h(A). There, as well as in [7], adjoint-based a posteriori estimates in the computed QoI

are combined with a statistical analysis to both estimate and bound the error in PΛ,M,N,h(A). In [8], adjoints

were used to compute both error and derivative estimates of Q(λ(j)) to improve the accuracy in PΛ,M,N,h(A).
7
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However, no work has to date fully explored the convergence rates of Algorithm 1. Furthermore, no work has

yet to establish that these rates are independent of the choice of QoI map despite other studies establishing

that the absolute error is very much affected by the geometric properties of the QoI maps [3].

In order to study convergence, we need to define a notion of distance on the space of probability measures

on Λ, which we denote by PΛ. There are many choices available to us and we discuss several useful metrics

on PΛ in Section 4. However, for now, let d represent a metric on PΛ.

Then, we have by repeated application of the triangle inequality that

(3.2) d(PΛ,M,N,h, PΛ) ≤ d(PΛ,M,N,h, PΛ,M,N )︸ ︷︷ ︸
(E1)

+ d(PΛ,M,N , PΛ,M )︸ ︷︷ ︸
(E2)

+ d(PΛ,M , PΛ)︸ ︷︷ ︸
(E3)

.

The term (E1) describes the effect of the error in the numerically evaluated Qj on the solution to the SIP.

The term (E2) describes the effect of finite sampling error in Λ on the solution to the SIP and (E3) describes

the effect of discretization error of PD on the solution to the SIP.

3.3. Skewness and Accuracy. In [7], the concept of skewness in a QoI map Q was introduced, quantified,

and related to the accuracy in solving the SIP with a finite number of samples. Essentially, skewness is

a geometric property that describes how the right angles in generalized rectangles belonging to BD are

transformed by Q−1. An a priori analysis demonstrated that the number of samples from a regular uniform

grid in Λ required to approximate the µΛ-measure of Q−1(E) to a desired level of accuracy was proportional

to the skewness of Q raised to the (d−1) power where d is the dimension of D. This is a version of the so-called

curse-of-dimension. Since the numerical solution of the SIP relies fundamentally on the approximation of

such Q−1(E), it was assumed that skewness impacted the probability measure computed using Algorithm 1

in a similar way.

Skewness was explored further in [9] in the context of optimal experimental design. There, an additional

geometric property of Q related to the precision in the solution of the associated SIP was introduced and

quantified. Under the same assumption that skewness impacted accuracy of the numerical solution to the

SIP, a multi-criteria optimization problem was formulated and solved to determine a Q ∈ Q that balanced

accuracy and precision in the SIP solution.

Since no previous study has considered the numerical convergence rates of Algorithm 1, the impact of

skewness on such rates is unclear. Moreover, it is not clear that skewness causes errors to pollute the entire

numerical solution of the SIP since local approximation errors in the µΛ-measure of contour events have a

tendency to cancel out over Λ. This is the primary focus of the numerical results in Section 6. Here, for

completeness, we define skewness below and refer the interested reader to [7, 9] for more details.
8
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Definition 1. For any Q ∈ Q, λ ∈ Λ, and a specified row vector jk of the Jacobian Jλ,Q, we define

(3.3) SQ(Jλ,Q, jk) :=
|jk|∣∣j⊥k ∣∣ .

We define the local skewness of a map Q at a point λ as

(3.4) SQ(λ) = max
1≤k≤d

SQ(Jλ,Q, jk).

Definition 2. The average (or expected) skewness is defined as

(3.5) SQ =
1

µΛ(Λ)

∫
Λ

SQ(λ) dµΛ

In [9], it was shown that SQ(λ) can be efficiently computed using a singular value decomposition of the

Jacobian Jλ,Q. In general, we approximate SQ with Monte-Carlo approximations.

4. The Metrization of a Space of Probability Measures

Throughout this section, let Ω denote a metric space with Borel σ-algebra B, and P the space of all probability

measures on (Ω,B). Let η and ν be two probability measures in P with associated densities given by f and g,

respectively, with respect to a σ−finite dominating measure µ. Such a measure µ can always be constructed,

e.g., take µ = (η + ν)/2. While there are many metrics we can define on P—each with its own qualitative

and practical benefits—we borrow from the overview by Gibbs and Su [10] of some of the most commonly

used ones among probabilists.

Definition 3. Discrepancy metric

(4.1) dD(η, ν) := sup
all closed balls B∈B

|η(B)− ν(B)|

The discrepancy metric recognizes the underlying topology of Ω. We can think of it as a “worst case”

difference between measures. It is similar to the Kolmogorov-Smirnov statistic used to measure the distance

between empirical and continuous one-dimensional cumulative distribution functions. Unfortunately, it has

limitations with respect to computational implementations owing to the domain over which the supremum

is being taken.

Definition 4. (Lévy-)Prokhorov metric

dP (η, ν) := inf {ε > 0 : η(B) ≤ ν(Bε) + ε ∀B ∈ B} , where Bε =

{
x : inf

y∈B
d(x, y) ≤ ε

}
(4.2)

Note that although not intuitive, this does satisfy the symmetric requirement of metrics. It should be evident

from the definition that this is not an easy quantity to compute nor implement. However, it is theoretically
9
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relevant as it metrizes weak convergence on any separable metric space. It has been shown that dP (η, ν) is

the minimum distance between random variables distributed according to η, ν [10].

Definition 5. Total variation distance

(4.3) dT (η, ν) := sup
A∈B
|η(A)− ν(A)| = 1

2
max
|h|≤1

∣∣∣∣∫ h dη −
∫
h dν

∣∣∣∣
where h : Ω→ R satisfies |h| ≤ 1.

For a countable state space Ω, we have

(4.4) dT (η, ν) =
1

2

∑
x∈Ω

|η(x)− ν(x)| ,

which is half the L1−norm between the two measures. Note that this metric takes values in [0, 1]. We note

that an equivalent definition is given by

(4.5) dT (η, ν) :=
1

2

∫
Ω

|f − g| dµ.

Definition 6. Hellinger distance

(4.6) dH(η, ν) :=
1√
2

[∫
Ω

(
√
f −√g)2 dµ

]1/2

.

Note this definition is independent of the dominating measure µ (this may be more easily seen in Eq. (4.8)).

Also note that while many authors do not include the leading coefficient, we do so to normalize the metric

to [0, 1] purely for aesthetic purposes. We also have that for a countable state space Ω,

(4.7) dH(η, ν) :=
1√
2

[∑
ω∈Ω

(√
η(ω)−

√
ν(ω)

)2
]1/2

.

Notice that by properties of probability measures, Eq. (4.6) is equivalent to

(4.8) dH(η, ν) =
1√
2

[
2

(
1−

∫
Ω

√
fg dµ

)]1/2

.

While the above error analysis presented in Sec. 3.2 can be undertaken using any of the metrics mentioned

above, we choose the Hellinger Distance in the numerical results of Sec. 6 for several reasons. First, it is

computationally efficient to implement since it does not contain any maximums or supremums over σ-algebra

B. While the same can be said for the Total Variation distance given in Eq. (4.5), the Hellinger distance

bounds the former as follows:

(4.9) d2
H(η, ν) ≤ dTV (η, ν) ≤

√
2 dH(η, ν).

10
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Thus, the Hellinger distance and its square also provide a useful insight into the distance between measures

defined by the Total Variation metric.

Second, and perhaps most importantly, since the spaces Λ we are considering are generally bounded and

finite, the Hellinger metric metrizes weak convergence (see Thm. 6 in [10]). The latter property is of notable

importance because the QoI maps we study are indeed (component-wise) functionals on the space of model

inputs Λ. Thus, convergence of a sequence of probability measures under the Hellinger metric implies that

the QoI’s will also converge component-wise in R. In other words, convergence in the Hellinger metric implies

the convergence of the sampled QoI map to the exact QoI map since the map is a linear functional of the

probability measure. In other words, if PΛ,M,N,h converges to either PΛ,M,N , PΛ,M , or PΛ using the Hellinger

metric, this implies that the error converged to zero in the numerically computed Q(λ(j)). Thus, convergence

in the Hellinger metric implies, in a sense, convergence of the numerical method used to construct the QoI

map. Furthermore, recall that weak convergence Pn → P is defined to mean∫
Pnf →

∫
Pf

for bounded Lipschitz functions f . Taking f = χA, this leads to the following implication:

PΛ,M,N → PΛ =⇒ PΛ,M,N (A)→ PΛ(A) ∀A ∈ BΛ.

It is a combination of computational ease of implementation and theoretical implications that motivates the

choice of the Hellinger distance as the metric used in the numerical results of Section 6.

5. Numerical Implementations and Software Contributions

The measures computed from Algorithm 1 are defined on a set of samples S =
{
λ(j)

}N
j=1

which implicitly

define a Voronoi-cell partition
{
V(j)

}N
j=1

of the parameter space Λ. We let BΛ,N denote the computational

algebra generated by
{
V(j)

}N
j=1

, i.e., using standard measure theory notation,

BΛ,N = σ

({
V(j)

}N
j=1

)
.

Clearly, BΛ,N ⊂ BΛ and the events A ∈ BΛ,N represent the A ∈ BΛ for which we can “easily” compute

probabilities and make inferences. While Algorithm 1 ultimately defines a probability measure implicitly on

(Λ,BΛ), computationally this is almost never done and the measures are only interrogated on the computa-

tional algebra associated with the set of samples.

Different sets Sk =
{
λ(i)
}Nk

i=1
, where the λ(i)’s and Nk’s may be completely different for each k, will lead

to different measures computed from Algorithm 1. Each Sk induces a computational algebra which we index

using the notation Bk for simplicity, where it is understood that Bk = BΛ,Nk
.

11
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This poses an immediate problem with respect to a computational approach to computing dH : how do

we compare measures PΛ,M,N1
and PΛ,M,N2

which may be defined on completely different computational

algebras (even if N1 = N2)? See Figure 2 for an illustration of such a scenario.

Figure 2. Two different Voronoi partitions induced by N1 = N2 = 25 uniform i.i.d. random
samples.

The proof of the following Lemma describes how to “computationally extend” any probability measure

defined on a computational algebra to a full σ-algebra B, which we exploit in Algorithm 2.

Lemma 1. Let µ be a measure on (Λ,BΛ),
{
V(j)

}N
j=1

be a partition of Λ, and BΛ,N the computational algebra

generated by
{
V(j)

}N
j=1

. Assume µ(V(j)) > 0 ∀ j = 1, . . . , N . Then, there exists a probability measure η on

(Λ,BΛ) such that η(A) = ηN (A) ∀ A ∈ BΛ,N .

In the proof below, we use ηN and µ to construct a type of “discrete” Radon-Nikodym derivative of η.

This is motivated by the formal structure of solutions given by Algorithm 1.

Proof. Let

(5.1) fN (λ) =

N∑
j=1

ηN (V(j))

µ(V(j))
χV(j)(λ).

Then, for any A ∈ BΛ, define

(5.2) η(A) =

∫
A

fN (λ) dµ.

We verify that η is a probability measure on (Λ,BΛ) and that η(A) = ηN (A) ∀ A ∈ BΛ,N below:
12
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(i) [Positive] Let A ∈ BΛ.

η(A) =

∫
A

fN (λ) dµ

=

∫
χA

N∑
j=1

ηN (V(j))

µ(V(j))
χV(j)(λ) dµ

=

N∑
j=1

(
ηN (V(j))

µ(V(j))

∫
χA∩V(j)(λ) dµ

)

=

N∑
j=1

(
ηN (V(j))

µ(V(j))
µ
(
A ∩ V(j)

))
≥ 0

(ii) [Definite]

η(∅) =

∫
∅
fN (λ) dµ =

∫
χ∅fN (λ) dµ = µ(∅) = 0

(iii) [Countably Additive] Let {Ak}∞k=1 ⊂ BΛ.

η(∪kAk) =

∫
∪kAk

fN (λ) dµ =

∫
χ∪kAk

fN (λ) dµ

=

∫ (∑
k

χAk

)
fN (λ) dµ =

∑
k

∫
χAk

fN (λ) dµ

=
∑
k

∫
Ak

fN (λ) dµ =
∑
k

η(Ak)

Finally, let A ∈ BΛ,N ⊂ BΛ. Then there exists some j∗ ∈ {1, 2, · · · , N} such that V(j∗) = A. We

have that

η(A) =

∫
A

fN (λ) dµ =

∫ N∑
j=1

(
ηN (V(j))

µ(V(j))
χV(j)

)
χV(j∗) dµ

=

∫
ηN (V(j∗))

µ(V(j∗))
χV(j∗) dµ =

ηN (V(j∗))

µ(V(j∗))
µ(V(j∗))

= ηN (V(j∗)) = ηN (A).

�

We note that in practice, χV(j)(λ) requires the use of nearest-neighbor computations, but otherwise

evaluation of Eq. (5.1) is straightforward to compute.

Since we now have a way to extend probability measures defined on (Λ,BΛ,N ) to probability measure

on (Λ,BΛ), we can use simple Monte-Carlo approximation schemes to the Hellinger distance between two

probability measures defined on two separate computational algebras. This is demonstrated in Algorithm 2.
13
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Algorithm 2: Hellinger Discretization

Let (Λ, BΛ,N1
, ηN1

) and (Λ, BΛ,N2
, ηN2

) be given.
Construct fN1

and fN2
and corresponding η1, η2 using Eq. (5.1) and Eq. (5.2), respectively.

Use Monte Carlo sampling to approximate

d2
H(η1, η2) =

∫
Λ

√
fN1

(λ)−
√
fN2

(λ) dµ

.

6. Numerical Results

We established in Section 4 the definition of metrics on the space P of probability measures on some

arbitrary space (Ω,B) and justified our choice for the Hellinger distance for its implications for the con-

vergence of QoI. We want an estimated probability measure µ̂Λ on the parameter space to converge with

respect to dH to some reference measure µΛ (either some known prior distribution taken as truth or another

approximation deemed to be sufficiently resolved for the given application or computational budget).1

All of our experiments follow the same structure:

[0-a ] Select Q ∈ Q and define PDQ
as a uniform distribution centered on a reference QoI value Q(λref )

for λref taken as the midpoint of Λ. Note that PDQ
is exactly discretized with M = 1 sample, so

that

PΛ,1 = PΛ.

[0-b ] Create a regular grid of samples in Λ = [0, 1]n using Nref,i equispaced points in each dimension.

Define N̄ :=
∏
Nref,i. Since n is small in the numerical examples shown here, we choseNref,i = 200 ∀ i

in each example.

[0-c ] Use Algorithm 1 to construct a reference solution PΛ,N̄ ≈ PΛ.

[1 ] Generate
{
S

(T )
k

}50

T=1
sets of uniform i.i.d. random samples where Nk = 25, 50, 100, 200, . . . , 6400,

and T represents the number of repeated trials of a sample size Nk.

[2 ] Solve the SIPs using Algorithm 1 to construct
{
P

(T )
Λ,M,N

}50

T=1
.

[3 ] Use 1E5 i.i.d. random samples in the Monte Carlo step of Algorithm 2 to estimate
{
d2
H(P

(T )
Λ,M,N , PΛ,N̄ )

}50

T=1
.

[4 ] Average over all trials T for each N to estimate the expected Hellinger distance for N samples and

analyze convergence to PΛ,N̄ .

[5 ] Repeat steps [0-a]–[4] for each Q ∈ Q under consideration.

To isolate the effect of skewness on our ability to approximate sets with finite sampling, we choose our maps

so that they preserve the sizes of sets between Λ and D under the push-forward measure given in Eq. (2.2).

1However, we could also choose to interrogate the push-forward measures given by propagating the µ̂Λ and µΛ forward to a
data space by a QoI map and taking the Hellinger distance on the resulting output space. This would measure the ability of

the maps to reconstruct the output probability measure.

14
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6.1. Example 1. This example shows that if Q(a) is defined by a rotation of Q(b), then the accuracy and

convergence rates of P
(a)
Λ,M,N are identical to P

(b)
Λ,M,N . We expect this to be true since skewness is rotationally

invariant, as we summarize in the following Proposition.

Proposition 1. The quantity SQ(λ) is invariant under rotations performed on Q for any λ.

Proof. If we apply a rotation Q, then the JQ,λ are also subject to the same rotation at each λ. Since rotations

are unitary operators, the norms given in Eq. (3.3) used to define skewness are unaffected. �

To demonstrate this, we define the space of QoI maps Q =
{
Q(a), Q(b), Q(c)

}
, where all three are linear

maps with the same local skewness SQ(λ) = 1 ∀λ ∈ Λ. The map Q(a) is the identity and the other two,

Q(b) and Q(c) are rotations of Q(a) by randomly chosen angles. Following the algorithmic outline above,

we perform a convergence study to PΛ,N̄ with results summarized in Figure 3. The convergence rates and

expected errors in the SIPs associated with each of these maps are virtually indistinguishable. Thus, it

appears that in light of Proposition 1 and these numerical results, the accuracy of the numerical solution to

the SIP is invariant under rotations to the QoI map.

N Q(a) Q(b) Q(c)

200 1.34E − 01 1.35E − 01 1.40E − 01
400 9.40E − 02 1.00E − 01 1.00E − 01
800 7.30E − 02 7.36E − 02 7.11E − 02
1600 5.08E − 02 5.13E − 02 4.96E − 02
3200 3.48E − 02 3.50E − 02 3.54E − 02
6400 2.56E − 02 2.53E − 02 2.51E − 02

Figure 3. The results of d2
H(PΛ,M,N , PΛ,N̄ ).

6.2. Example 2. In this example, we demonstrate the key point of this study: the magnitude of skewness

between QoI impacts accuracy by orders of magnitude, and thus in optimizing the choice of a QoI map, it is

in our interest to pursue the minimization of skewness. This is especially true in problems where the number

of random samples we are permitted to use is constrained by the computational cost of model evaluations.

To illustrate this point, we first define the linear maps

(6.1) QS :=

Q(s) =

 1 0
√
s2 − 1 1


s∈S

,

15
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for S = {1, 2, 4} because they allow us to control the global skewness (since it is equal to local skewness

in a linear map) while preserving the measures of sets between Λ and D. More specifically, the support of

the solution to the SIP associated with each QoI map has equal µΛ-measure, which isolates the impact of

accuracy solely to the skewness of the QoI map. We show what the component row vectors of these maps in

Figure 4 and note the skewness is determined by the ratio of the magnitude of the black line to its projection

onto the vertical axis (and each of these projects directly on to the unit vector). The skewness of these maps

is given by the index s, so Q(1) is 1, the skewness of Q(2) is 2, and SQ(4) = 4.

The maps chosen for this example are expository ones that provide valuable insight despite their simplicity.

For example, when solving many physics-based problems, local linear approximations are often used to

simplify model evaluation and guide optimization procedures.

Figure 4. (Left to right): The component row-vectors of Q(1), Q(2), and Q(4). Our linear
maps take R2 to R2 and can be visualized graphically as the component row-vectors of the
matrices representing the transformation. The first row is highlighted in blue. The skewness
is then simply equal to the reciprocal of the inverse sine of the angle between these vectors.

We see in Figure 5 that skewness has a very direct impact on the number of samples required to achieve a

particular value for the Hellinger distance. We can see that the measure induced by Q(1) requires fewer than

half the number of samples to be as accurately resolved as Q(2) does. The effect is even more pronounced

N Q(1) Q(2) Q(4)

200 1.35E − 01 2.03E − 01 3.12E − 01
400 9.96E − 02 1.47E − 01 2.15E − 01
800 7.19E − 02 1.04E − 01 1.53E − 01
1600 5.27E − 02 7.49E − 02 1.10E − 01
3200 3.70E − 02 5.25E − 02 7.52E − 02
6400 2.76E − 02 3.86E − 02 5.54E − 02

102 103 104

N

10-2

10-1

100

d
2 H

MC Conv. Rate
Q(1)

Q(2)

Q(4)

Figure 5. The results of d2
H(PΛ,M,N , PΛ,N̄ ).
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when compared against Q(4). It appears that if the ratio of skewness between two maps is 2, then the more-

skewed map will require at least twice as many random samples to approximate the set on a a well-resolved

discretization with the same error tolerance.

This provides a strong motivation for minimizing skewness and reinforces the results from [2], where it

was demonstrated that a similar relationship existed in the number of samples required to remove error in

inverse set approximations quantified by the µΛ-measure of the symmetric difference of the inverse sets.

6.3. Example 3. We extend the numerical investigation to a parameter space of dimension three to further

illustrate that these results hold as we move towards higher dimensions. Generally, we have fewer QoI than

number of uncertain model parameters, so we assume that the potential QoI maps are defined by the 2× 3

matrices

(6.2) QS :=

Q(s) =

 1 0 0
√
s2 − 1 1 0


s∈S

.

Here, as in the previous example, the index s indicates the magnitude of skewness. Furthermore, the results

of Example 6.1 justify the restriction of the maps to this form since any linear map of skewness s is simply

a rotation of maps of this form.

N Q(1) Q(2) Q(4)

200 2.98E − 01 4.18E − 01 5.60E − 01
400 2.27E − 01 3.27E − 01 4.69E − 01
800 1.81E − 01 2.70E − 01 3.97E − 01
1600 1.46E − 01 2.15E − 01 3.09E − 01
3200 1.15E − 01 1.72E − 01 2.44E − 01
6400 9.09E − 02 1.39E − 01 1.95E − 01

Figure 6. The results of d2
H(PΛ,M,N , PΛ,M,N̄ ) for M = 1, N̄ = 8, 000, 000.

In Figure 6, it appears that the effect of skewness is even more pronounced in higher dimensions, and

that the number of samples required to achieve similar levels of accuracy between two maps with a ratio

of skewness 2 is now quadrupled. The analysis of [7] suggested a dependence of accuracy related to the

skewness raised to a power related to the dimension of the data space, but these results seem to indicate

that the constant of proportionality may have a functional dependence on the dimension of Λ. This will be

investigated further in a future study.
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7. A Nonlinear Example

Here we present a nonlinear example to demonstrate that the general trend of the previous results also

holds. Some nuanced differences do arise, however, and we address them after the problem statement.

Consider the one-dimensional heat equation with homogeneous Neumann boundary conditions on the unit

interval:

ρc
∂T

∂t
= ∇ · (κ∇T ) + f(x), x ∈ (0, 1), t ∈ (0, 1)

f(x) = Ae
−(x−0.5)2

w χ[0,0.5](t)

(7.1)

Alternative setup:

(7.2)

ρc
∂T
∂t = ∇ · (κ∇T ) + f(x, t), if x ∈ Ω

∂T
∂~n = 0 if x ∈ ∂Ω

where Ω = (0, 1)× (0, 1) is the space-time interior and f(x, t) = Ae
−(x−0.5)2

w χ[0,0.5](t).

Here, we interpret the following problem as heating the middle of an infinitesimally thin unit-length rod

for half a second with the heat-source modeled by a Gaussian curve with amplitude A = 50 and variance of

w = 0.05. The rod is subdivided in two, and each half has an uncertain thermal diffusivity κ ∈ [0.01, 0.2].

This yields a two-dimensional parameter space λ = (λ1, λ2) ∈ [0.01, 0.2]× [0.01, 0.2], where λ1 represents the

thermal diffusion on the left-half and λ2 is the κ for the right half.

The quantities of interest we study are four point-evaluations of the state variable, at spatial location 0.25,

0.51, 0.67, and 0.98 along the rod. Choosing any pair of them for the inversion yields six possible quantities

of interest maps. As before, we demonstrate that some choices appear to have advantages over others.

From the prior examples, we would suspect that choosing the QoI map with lower skewness results in

lower Hellinger distances. However in the earlier experiments we utilized maps that inverted into sets of

identical size, which is not the case in this nonlinear example; each QoI map scales sets differently depending

on the location in the parameter space. To isolate this scaling effect, we attempt to compare QoIs that invert

into sets of similar size on average but have differing average skewness.

This is what motivated our specific choice of spatial locations at which to measure the state variable T .

Our first QoI Q(a) uses measurements at 0.25 and 0.51, and has average skewness of 1.08, and our second

Q(b) uses measurements at 0.67 and 0.98, with average skewness 1.56. While we would have liked to use a
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map with average skewness of 2 for a more similar comparison to the prior examples, this was the best range

we could find where the maps inverted into sets of comparable size on average2.

Owing to the nonlinearity of the problem, the Hellinger distances between reference and estimated prob-

ability measures now have an inherent dependence on the location of the point λ in the parameter space.

We ran the simulations for a regular 3× 3 grid exploring the interior of the parameter space and present a

selection of two reference points that illustrate the differences in the nonlinear case.

In the two-dimensional data spaces DQ, our uncertainty is a uniform box centered at Q(λref) with side-

lengths of 0.1. When λref is the bottom-left corner of our 3 × 3 grid, the two maps produce very different

results, with Q(a) outperforming Q(b) in a similar manner as we saw in the linear examples (see Fig. 8).

When λref is in the upper-center of the grid, the inverse images are similar, as shown in Fig. 9, and so which

map to use for inversion into this part of the parameter spaces is not a clear choice. We might even be

tempted to use the more-skewed (on average) map since it inverts into a set with smaller support.

Figure 7. Comparison of the differences in Hellinger distances for the two maps and two
reference points. The results for the bottom-left reference value is shown on the left and the
top-center is shown on the right.

The Hellinger distance plots for these two reference values are compared in Fig. 7. Of the nine reference

λ’s we studied, Q(a) yielded no considerable advantage in terms of the number of samples required to

approximate the inverse images in three cases (the plots were similar to that in the right of Fig. 7). In three

cases, Q(a) performed just a bit better than Q(b), (somewhere between the two figures in Fig. 7). In two

cases, Q(a) performed better than Q(b), as in the left of Fig. 7. In one case (with λ in the bottom right

corner), the difference was even more dramatic (Q(a) yielded similar Hellinger distances with less than a

fourth the samples).

2average local scaling is 1.99 versus 2.19
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Figure 8. The inverse image of the reference measure for Q(a) (left) and Q(b) (right). The
latter is visually quite a bit more skewed

Figure 9. The inverse image of the reference measure for Q(a) (left) and Q(b) (right).
Here, the local skewnesses are similar, so we do not expect to see much of a difference in
the Hellinger distances.

With these nonlinear cases, we find that taking an “on average” approach is inefficient, as there can be

dramatic differences in the geometric properties of the inverse images in the parameter space depending on

the location. These results motivate further study into utilizing different QoI maps (perhaps some of those

other four combinations available to us in this example) depending on where the samples came from in the

parameter space. In general, we saw in this example that given that two maps invert into sets of similar size

on average, using the one with lower skewness results in less samples required to accurately approximate

the inverse image. The maps we used had average skewnesses that differed by 0.5 (instead of by 1), and the

trend from the linear examples still held in significant portions of the parameter space.
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8. Conclusion

We have demonstrated that the absolute error of an approximate solution to the SIP is proportional to

the skewness of the map used for the inversion process. However, the convergence rate of Algorithm 1 is

unaffected by such a choice. While it has been documented that the choice of QoI map used for inversion

has an effect on the quality of the solution, here we achieve a more precise description of the relationship

by equipping the space of our solutions (densities, measures) with a metric. The maps considered in this

work all preserved the measures of sets between Λ and D in order to isolate the effect of skewness. We found

that the resulting inverse densities were easier to approximate with finite sampling when the maps used for

inversion had lower skewness values.

In situations where samples are expensive to evaluate, we would prefer to use less skewed maps provided

they scale the sizes of sets similarly. Though it is still not clear exactly what weighting should be given to

the multi-objective problem in [9], this additional insight provided by this work would certainly inform such

a decision.

This work also motivates the development of an approach that breaks down the parameter space into

subdomains over which some QoI map is deemed optimal with respect to its skewness and scaling properties.

This decomposition would be used in defining a piecewise QoI map that is geometrically optimal globally.

Any optimization approach (such as that in [9]) which seeks to find an optimal choice of QoI map on average

will inherently not leverage information from available QoIs that have these characteristics. The additional

computational overhead produced by such a partitioning and definition of a piecewise-defined map would be

relatively low. In effect, this becomes an approach that has the potential to utilize more data at a similar

computational cost to produce smaller regions of higher probability in the inverse measure. Preliminary

results from research performed in Summer 2015 and 2016 appear promising.

One practical expansion of the work performed for this report would be to integrate the Hellinger distance

function into a new module in BET. This might potentially function as a tool for researchers to compare

successive refinements of their sample space and use the metric to determine when to stop using a Cauchy-

criterion (or with respect to some reference measure computed for initial model studies).
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